Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Commun (Camb) ; 59(13): 1797-1800, 2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2221890

ABSTRACT

The spike protein of SARS-CoV-2 has been widely used as an effective vaccine immunogen, although some limitations still remain. Herein, O-GalNAc glycosylated RBD (Tn-RBD) was synthesized as an antigen via in vitro glycosylation reactions. The inhibition ability against hACE2 binding of antibodies induced with Tn-RBD was 30-40% increased compared to that induced with RBD. This result implies that Tn-glycosylation might play important roles in the immunogenicity of the RBD protein, which should be considered in the design of novel vaccines to fight against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2 , Antibodies, Viral , Glycosylation
2.
ACS Infect Dis ; 8(10): 2198-2206, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2016543

ABSTRACT

Harnessing highly conserved peptides derived from the receptor binding domain (RBD) of spike (S) protein to construct peptide-based inhibitors is one of the most effective strategies to fight against the ever-mutating coronavirus SARS-CoV-2. But how the O-glycosylation affects their inhibition abilities has not been intensively explored. Herein, an intrinsic O-glycosylated peptide P320-334 derived from RBD was screened and homogeneous O-linked glycopeptides containing Tn (GalNAcα1-O-Ser/Thr), T (Galß1-3GalNAcα1-O-Ser/Thr), sialyl-Tn (sTn, Siaα2-6GalNAcα1-O-Ser/Thr), and sialyl-T (sT, Siaα2-3Galß1-3GalNAcα1-O-Ser/Thr) structures were first synthesized via chemoenzymatic strategies. Compared with the unglycosylated peptide, the binding of sT-P320-334 to hACE2 was enhanced to 133% and the inhibition capacity against RBD-hACE2 binding of sTn- and sT-P320-334 was significantly increased up to 150-410%. Thus, our results suggest the sialic acid residue on the terminal of short O-glycan structures might strengthen the inhibition capacities of these peptide-based inhibitors, which might provide novel optimization directions for the inhibitor design.


Subject(s)
COVID-19 , Glycopeptides , Glycopeptides/chemistry , Glycopeptides/pharmacology , Humans , N-Acetylneuraminic Acid , Peptides , Polysaccharides , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL